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Abstract. Group Activity Recognition detects the activity collectively
performed by a group of actors, which requires compositional reasoning of
actors and objects. We approach the task by modeling the video as tokens
that represent the multi-scale semantic concepts in the video. We propose
COMPOSER, a Multiscale Transformer based architecture that performs
attention-based reasoning over tokens at each scale and learns group
activity compositionally. In addition, prior works suffer from scene biases
with privacy and ethical concerns. We only use the keypoint modality
which reduces scene biases and prevents acquiring detailed visual data
that may contain private or biased information of users. We improve the
multiscale representations in COMPOSER by clustering the intermediate
scale representations, while maintaining consistent cluster assignments
between scales. Finally, we use techniques such as auxiliary prediction
and data augmentations tailored to the keypoint signals to aid model
training. We demonstrate the model’s strength and interpretability on
two widely-used datasets (Volleyball and Collective Activity). COMPOSER
achieves up to +5.4% improvement with just the keypoint modality 1.

Keywords: Keypoint-only group activity recognition · Compositional-
ity · Multiscale representations · Transformer · Video understanding

1 Introduction

Group Activity Recognition (GAR) detects the activity collectively performed
by a group of actors in a short video clip [19,108]. GAR has widespread societal
implications in a variety of domains including security, surveillance, kinesiology,
sports analysis, robot-human interaction, and rehabilitation [29,83,117,27].

⋆ Work done as a NEC Labs intern.
1 Code is available at https://github.com/hongluzhou/composer

ar
X

iv
:2

11
2.

05
89

2v
3 

 [
cs

.C
V

] 
 2

5 
Ju

l 2
02

2

https://github.com/hongluzhou/composer


2 H. Zhou et al.

Keypoint

Person

Interaction
...

Group

Clip Object(s)

Clip Object(s)

Clip Object(s) Clip Object(s)

Scale  1

Scale  2

Scale  3 Scale  4

right set
Scale  3: 

Person-to-Person 
Interact ion

Scale  4: Person Group

Scale  2: 
Person

Scale  1: Keypoint

right set

(a) (b)

Keypoint

Person

Person-to-person 
interaction

Person group

Object

Clip

Fig. 1. (a) The keypoint-only setup generalizes better for GAR. The Volleyball
Olympic split [102] ensures videos having vastly different scene background between
training and testing, which can examine GAR model’s scene generalization ability.
RGB-based methods severely suffer from scene biases and have poor model generaliz-
ability. (b) Main idea. We propose COMPOSER that uses keypoint only modality for
GAR by modeling a video as tokens that represent the multiscale semantic concepts in
the video, which include keypoint, person, person-to-person interaction, person group,
object if present, and the clip. Four scales are formed by grouping actor-related tokens
according to their semantic hierarchy. Representations of tokens in coarser scales are
learned and aggregated from tokens of the finer scales. COMPOSER (Fig. 3) facilitates
compositional reasoning of group activity in videos.

The task requires addressing two challenges. First, GAR requires a composi-
tional understanding of the scene [3]. Because of the crowded scene, it is challeng-
ing to learn meaningful representations for GAR over the entire scene [108]. Since
group activity often consists of sub-group(s) of actors and scene objects, the final
action label depends on a compositional understanding of these entities [108,116].
Second, GAR benefits from relational reasoning over scene elements to under-
stand the relative importance of entities and their interactions [41,113]. For ex-
ample, in a volleyball game, persons around the ball performing the jumping
action are more important than others standing in the scene.

Existing work has proposed to jointly learn the group activity with individ-
ual actions [47,90,84,45,8,5] or person sub-groups [65,75,27] for a compositional
understanding of the group activity. Meanwhile, graph [117,46,107,41] and trans-
former [29,65] based models have been proposed for relational reasoning over
scene entities. However, these methods do not sufficiently make use of the mul-
tiscale scene elements in the GAR task by modeling over entities at either one
semantic scale (e.g., person [29,117,107,41]) or two scales (person and person
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group [65,75,27], or keypoint and person [82]). More importantly, explicit mul-
tiscale modeling is neglected, lacking consistent compositional representations
for the group action tasks. Furthermore, majority of the prior GAR methods
rely on the RGB modality (see Table. 3), which causes the model more likely
to have privacy and ethical issues when deployed in real-world applications [39].
Last but not least, the RGB input hinders the model’s robustness to changes
in background, lighting conditions or textures, and often results in poor model
generalizability due to scene biases (see Fig. 1 (a)) [17,94].

In this paper, we present COMPOSER that addresses compositional learning
of entities in the video and relational reasoning about these entities. Inspired
by how humans are particularly adept at representing objects in different gran-
ularities meanwhile reasoning their interactions to turn sensory signals into a
high-level knowledge [43,60], we approach GAR by modeling a video as tokens
that represent the multi-scale semantic concepts in the video (Fig. 1 (b)). Com-
pared to the aforementioned prior works, we consider more fine-grained scene
entities that are grouped into four scales. By combining the scales together with
Multiscale Transformer (Fig. 4), COMPOSER provides attention-based reasoning
over tokens at each scale, which makes the higher-level understanding of the
group activity possible. Moreover, COMPOSER uses only the keypoint modality.
Using only the 2D (or 3D) keypoints as input, our method can prevent the sen-
sor camera from acquiring detailed visual data that may contain private or biased
information of users 2. Keypoints also allow the model to focus on the action-
specific cues, and help the model be more invariant to the scene biases. COMPOSER
generalizes much better to testing data with different scene backgrounds (see the
Volleyball Olympic split results in Table. 1).

COMPOSER learns consistent multiscale representations which boost the perfor-
mance for GAR (Fig. 2). This is achieved by contrastive clustering assignments of
clips. Intuitively, a model can recognize the group activity using representations
of entities at just one particular scale. Hence, we consider representations of the
clip token learned across scales as representations of different views of the clip.
Such perspective allows us to cluster clip representations learned at all scales
while enforcing consistency between cluster assignments produced from differ-
ent scales of the same clip. In order to enforce this consistency, we follow [11]
and use a swapped prediction mechanism where we predict the cluster assign-
ment of a scale from the representation of another scale. However, distinct from
related works [11,4,13], which use information from multiple augmentations or
modalities for self-supervised learning from unlabelled images or videos, we use
information from multiple scales for the task of group activity recognition. Con-
trasting clustering assignments enhance our intermediate representations and
the overall performance. Finally, we use techniques such as auxiliary prediction
at each scale and data augmentation methods such as Actor Dropout to aid
training.

Our contributions are three-fold:

2 Even for the keypoint extraction backbone which our method is agnostic to, there
are existing works [39] that perform privacy-preserving keypoint estimation.
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Fig. 2. Embedding space learned by COMPOSER. COMPOSER exploits a contrastive
clustering objective (Sec. 3.3) to learn consistent multiscale representations for GAR.
This is achieved by clustering clip representations learned at all scales. The cluster-
ing objective encourages an “agreement” between scales on the high-level knowledge
learned (‘Pull Close’ representations of the same clip). Contrastive learning is per-
formed on the clusters, which also helps the model to discriminate between clips
with different semantic characteristics (‘Pull Close’ representations of the semantically-
similar clips and ‘Push Apart’ those that are semantically-different). In the illustration,
we use subscript to denote the scale and use superscript to indicate different clips.

1. We present COMPOSER for compositional reasoning of group activity in videos.
COMPOSER can distill and convey high-level semantic knowledge from the el-
ementary elements of the human-centered videos. We learn contrastive clus-
tering assignment to improve the multiscale representations. By maintaining
a consistent cluster assignment across the multiple scales of the same clip,
an agreement between scales on the high-level knowledge learned can be
promoted to optimize the representations across scales.

2. We use only the keypoint modality that allows COMPOSER to address the
privacy and ethical concerns and to be robust to changes in background, with
auxiliary prediction and data augmentation methods tailored to learning
group activity from the keypoint modality.

3. We demonstrate the model’s strength and interpretability on two commonly-
used datasets (Volleyball and Collective Activity) and COMPOSER achieves up
to +5.4% improvement using just the keypoint modality.

2 Related Work

Much of the recent research on GAR explores how to capture the actor rela-
tions [46,6,107,41,83]. Several works tackle this problem from a graph-based per-
spective [46,71,113,112]. Some utilize attention modeling [84,109,71,116] includ-
ing using Transformers [29,65]. Existing works have primarily used RGB- and/or
optical-flow-based features with RoIAlign [36] to represent actors [112,84,107,8].
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Fig. 3. COMPOSER. Given tokens that represent the multiscale semantic concepts (Fig. 1)
in the human-centered video, COMPOSER jointly learns group activity, individual actions
and contrastive clustering assignments of clips. Auxiliary predictions are enforced to
aid training (Sec. 3.5).

A few recent works replace or augment these features with keypoints/poses of
the actors [102,82,29,116]. In this paper, we use only the light-weight coordinate-
based keypoint representation. We propose a Multiscale Transformer block to
hierarchically reason about entities at different semantic scales and we aid learn-
ing group activities by improving the musicale representations. Please see an
in-depth discussion on related works in Appendix G.

3 Methodology

We present COMPOSER (Fig. 3), a novel Multiscale Transformer based architecture
for GAR. In Sec. F.2, we describe the multi-scale semantic tokens representing a
video with group activities. We introduce COMPOSER and especially its reasoning
module Multiscale Transformer in Sec. 3.2. We describe data augmentations in
Sec. 3.4 and the exact formulation of auxiliary prediction in Sec. 3.5.

3.1 Tokenizing a Video as Hierarchical Semantic Entities

We model a video as semantic tokens that allow our method easily adaptable to
understanding any videos with multi-actor multi-object interactions [72].
• Person Keypoint. We define a person keypoint token, kj

p ∈ Rd that represents
a keypoint joint j (j = 1, . . . , j′) of person p (p = 1, . . . , p′) in all timestamps,
where j′ is the number of joint types and p′ is the number of actors. The ini-
tial d-dimensional person keypoint token is learned by encoding the numerical
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coordinates (in the image space) of a certain keypoint track3. The procedure of
encoding includes coordinate embedding, time positional embedding, keypoint
type embedding, and OKS-based feature embedding [95] to mitigate the issue of
noisy estimated keypoints. Details are available in Appendix F.2.

• Person. A person token is defined as pp ∈ Rd, initially obtained by aggre-
gating the standardized keypoint coordinates of person p over time through
concatenation and FFN-based transformation.

• Person-to-Person Interaction. Modeling the person-to-person interactions
is critical for GAR [108]. Unlike existing works that typically consider an inter-
action as an edge connecting two person nodes and learn a scalar to depict its
importance [113], we model interaction as nodes (tokens) to allow for the mod-
eling of complex higher-order interactions [72]. The person-to-person interaction
token is defined as ii ∈ Rd where i = 1, . . . , p′×(p′−1) (bi-directed interactions).
Initial representation of the interaction between person p and q is learned from
concatenation of pp and pq, followed by FFN-based transformation.

• Person Group. We define the group token gg ∈ Rd where g = 1, . . . , g′

for videos where sub-groups are often separable. g′ denotes the num. of sub-
groups in the video. Given the person-to-group mapping which can be obtained
through various mechanisms (e.g., heuristics [82], k-means [65], etc [27,58].),
representation of a group is an aggregate over representations of persons in the
group similarly through concatenation and FFN.

• Clip. The special [CLS] token (∈ Rd) is a learnable embedding vector and is
considered as the clip representation. CLS stands for classification and is often
used in Transformers to “summarize” the task-related representative information
from all tokens in the input sequence [26].

• Object. Scene objects can play a crucial role in videos where human(s) inter-
act with object(s). E.g., in a volleyball game where one person is spiking and
multiple nearby actors are all jumping with arms up, it can be difficult to tell
which person is the key person with information of just the person keypoints
due to their similar poses. The ball keypoints can help to distinguish the key
person. Object keypoints can be used to represent an object in the scene with
similar benefits of person keypoints (e.g., to boost model robustness [49]). Object
keypoint detection [9,69] benefits downstream tasks such as human action recog-
nition [42], object detection [49,115], tracking [76], etc [59]. Thus, we use object
keypoints to represent each object for GAR. We denote object token ee ∈ Rd

where e = 1, . . . , e′ and e′ is the maximal number of objects a video might have.
Similar to person tokens, the initial object tokens are learned from aggregating
the coordinate-represented object keypoints.

3.2 Multiscale Transformer

Multiscale Transformer takes a sequence of multiple-scale tokens as input, and
refines representations of these tokens. Specifically, tokens of the four scales are:

3 We use track-based representations [102,119,29,65] to represent each token.
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tions that make a high-level understanding of group activity possible.

Scale 1:
{
[CLS] , e1, · · · , ee′ ,k1

1, · · · ,k
j′

p′

}
,

Scale 2: {[CLS] , e1, · · · , ee′ ,p1, · · · ,pp′} ,
Scale 3:

{
[CLS] , e1, · · · , ee′ , i1, · · · , ip′×(p′−1)

}
,

Scale 4: {[CLS] , e1, · · · , ee′ ,g1, · · · ,gg′} .

(1)

We utilize a Transformer encoder [103] at each scale to perform relational rea-
soning of tokens in that scale. We review details of Transformer in Appendix F.1.

Hierarchical representations of tokens are maintained in an elaborately de-
signed Multiscale Transformer block (Fig. 4). In the Multiscale Transformer
block, operations in the four scales are the same (but with different parame-
ters) to maintain simplicity. Specifically, given a sequence of tokens of scale s
(Eq. 1), Transformer encoder outputs refined representations of these tokens.
Then, concatenation and FFN are used to aggregate refined representations of
actor-related tokens, in order to form representations of actor-related tokens
in the subsequent coarser scale s+1. Such learned representations are summed
with their initial representations (input to the Multiscale Transformer) (i.e. Skip
Connection). The resulting actor-related tokens, as well as scale s updated [CLS]
token and object token(s) form the input sequence of the Transformer encoder
in the scale s+1 (see wiring in Fig. 4).

COMPOSER uses the initial representations of the multi-scale semantic tokens
(Sec. F.2) as input, and utilizes multiple blocks of Multiscale Transformer to
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perform relational reasoning over these tokens. With refined token representa-
tions, COMPOSER jointly learns group activity, individual actions and contrastive
clustering of clips (the multitask-learning details are in Sec. 3.5).

3.3 Contrastive Clustering for Scale Agreement

We consider the clip tokens learned at different scales as representations of dif-
ferent views of the clip instance. Then, we cluster clip representations learned
in all scales while enforcing consistency between cluster assignments produced
from different scales of the clip. This can act as regularization of the embedding
space during training (Fig. 2). To enforce consistency, we use a swapped predic-
tion mechanism [11] where we predict the cluster assignment of a scale from the
representation of another scale. COMPOSER jointly learns GAR and the swapped
prediction task to capture an agreement of the common semantic information
hidden across the scales.
Preliminaries. Suppose vn,s ∈ Rd represents the learned representation of clip
n in scale s, where s ∈ {1, 2, 3, 4}. Following prior works [11,52], we first project
the representation to the unit sphere. We then compute a code (i.e., cluster
assignment) qn,s ∈ RK by mapping vn,s to a set ofK trainable prototype vectors,
{c1, . . . , cK}. We denote by C ∈ RK×d the matrix whose rows are the c1, . . . , cK .
Swapped Prediction. Suppose s and w denote 2 different scales from the four
representation scales. The swapped prediction problem aims to predict the code
qn,s from vn,w, and qn,w from vn,s, with the following loss function:

Lswap (vn,w,vn,s) = ℓ (vn,w,qn,s) + ℓ (vn,s,qn,w) (2)

where ℓ (vn,w,qn,s) measures the fit between vn,w and qn,s. ℓ (vn,w,qn,s) is the
cross entropy loss between qn,s and the probability obtained by taking a softmax
of the dot products of vn,w and prototypes in C:

ℓ (vn,w,qn,s) = −
K∑

k=1

q(k)
n,s log

exp
(
1
τ vn,wc

⊤
k

)∑K
k′=1 exp

(
1
τ vn,wc⊤k′

) (3)

where τ is a temperature parameter. The total loss of the swapped prediction
problem is taking Eq. (2) computed over all pairs of scales and all N clips,

Lcluster =
1

N

N∑
n=1

 ∑
w,s∈{1,2,3,4}&w ̸=s

Lswap (vn,w,vn,s)

 (4)

Online Clustering. This step produces the cluster assignments using the learned
prototypes C and the learned clip representations only within a batch, V ∈ RB×d

where B denotes the batch size. We perform the clustering in an online fashion
for faster training and use the method proposed in [11]. Specifically, online clus-
tering yields the codes Q ∈ RB×K . We compute codes Q such that all examples
in a batch are equally partitioned by the prototypes (which prevents the trivial
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solution where every clip has the same code). Q is optimized to maximize the
similarity between the learned clip representations and the prototypes,

max
Q∈Q

Tr
(
QCV ⊤)+ εH(Q), (5)

Q =

{
Q ∈ RB×K

+ | 1BQ =
1

K
1K , Q1⊤

K =
1

B
1⊤
B

}
where the trace Tr is the sum of the elements on the main diagonal, H is the
entropy function, and ε is a parameter that controls the smoothness of the map-
ping. 1K ∈ RK and 1B ∈ RB are a vector of ones to enforce the equipartition
constraint. The continuous solution Q∗ of Eq. (5) is computed with the iterative
Sinkhorn-Knopp algorithm [22,11].

3.4 Data Augmentation for Keypoint Modality

We use the following data augmentations to aid training and improve general-
ization ability of the model learned from the keypoint modality.
Actor Dropout is performed by removing a random actor in a random frame,
inspired by [77] that masks agents with probabilities to predict agent behaviors
for autonomous driving. We remove actors by replacing the representation of the
actor with a zero vector.
Horizontal Flip is often used by existing GAR methods [119,102,82], which is
performed on the video frame level. This augmentation causes the pose of each
person and positions of (left and right) sub-groups flipped horizontally. We add
a small random perturbation on each flipped keypoint.
Horizontal Move means we horizontally move all keypoints in the clip by a
certain number of pixel locations, which is randomly determined per video and
bounded by a pre-defined number (i.e., 10). Similarly, afterwards a small random
perturbation is applied on each keypoint.
Vertical Move is done similar to the Horizontal Move, except we move the
keypoints in the vertical direction.

Novel practices like Actor Dropout, Horizontal/Vertical Move and random
perturbations help the model to perform GAR from noisy estimated keypoints.

3.5 Auxiliary Prediction and Multitask Learning

We take the learned representation of the clip at each scale of each Multiscale
Transformer block, and perform auxiliary group activity predictions (Fig. 3).
Specifically, each of the clip representations learned at each scale of each block
is sent as input to the group activity classifier to produce one GAR result. In
addition, person representation from the last Multiscale Transformer block is the
input to a person action classifier. Meanwhile, the loss of the swapped prediction
problem is computed given the learned representations of the clip of all 4 scales
from the last Multiscale Transformer block. The total loss is:

Ltotal =

M−1∑
m=1

LgroupAux + λ (LgroupLast + Lperson + Lcluster) (6)
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where LgroupAux represents the loss from Auxiliary Prediction incurred by clip
representations at different scales and early blocks of the Multiscale Transformer,
LgroupLast is from the last Multiscale Transformer block, Lperson is the person
action classification loss, and Lcluster is the contrastive clustering loss (Eq. 4). m
denotes the index of the Multiscale Transformer block, M is the total number
of the Multiscale Transformer blocks, and λ is a hyper-parameter that weights
the importance of predictions from the last block. For metric evaluation, we use
the clip token from the last scale in the last Multiscale Transformer as input to
the group activity classifier.

4 Experimental Evaluation

4.1 Dataset

The Volleyball dataset [47] (VD) comprises 4, 830 clips from 55 videos. The
group activity labels include 8 activities: 4 main activities (set, spike, pass, win-
point) which are divided into two subgroups, left and right. Each player can
perform one of the 9 actions: blocking, digging, falling, jumping, moving, setting,
spiking, standing and waiting. The dataset has a default ‘Original’ split in which
train/test videos were randomly splitted (39 train and 16 test videos). A skewed
‘Olympic’ split [102] was later released in which train/test videos are splitted
according to the match venues: 29 train videos are from the same 2012 London
Olympics venue, while the rest 26 test videos are from numerous venues, and
thus largely differs from the train videos w.r.t. the scene background.
The Collective Activity dataset [20] (CAD) is a dataset with 44 real-life
videos [108]. The group activity labels are crossing, waiting, queueing, walking
and talking (person action labels have an additional ‘N/A’ class). We follow prior
works to merge the class crossing and walking intomoving [117,106,110,112], and
use the same train-test split [117,107,84] and actor tracklets [117,8]. Please refer
to Appendix F for implementation details on both datasets.

4.2 Comparison with State-of-the-Arts

Scene Generalization for Keypoint-only Setup To support the keypoint-
only setup for GAR, we first compare the generalization capability of models
using either RGB or the keypoint modality. In Table 1, I3D and VGG-16 are
two commonly-used image backbone by prior RGB-based GAR methods; the
rest are all GAR models (all use VGG-16 as the backbone).

On VD Olympic split, the best prior RGB-based method is DIN [117] in
Table 1. We substitute DIN with a COMPOSER variant 4 (Sec. 1) that also con-
sumes RGB input instead of keypoint, and the result is 81.1% which is 2% higher
than DIN, suggesting the stronger reasoning strength of COMPOSER, but the ac-
curacy is still low due to the RGB signals. POGARS [102] uses the keypoint

4 This COMPOSER variant consumes RGB-based ROI-aligned person features as input,
and thus only models 3 scales: person, interaction, and the group scale.
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Table 1. Test accuracy on VD un-
der different train/test splits. Yel-
low shaded rows highlight the methods
use RGB input, and blue for keypoint

Model
VD Acc. (%) ↑
Olympic Original

I3D [12] 73.9 84.6

VGG-16 [93] 76.4 91.6

PCTDM [110] 75.2 91.7

SACRF [83] 71.1 91.8

AT [29] 76.9 93.0

ARG [107] 77.8 93.3

TCE-STBiP [116] 78.5 93.5

DIN [117] 79.1 93.6

POGARS [102] 89.7 93.2

COMPOSER (ours) 95.1 93.7

Improvement +5.4% +0.1%
*Note: Keypoint-based methods do NOT use
ball keypoint in this table in order to have
a rigorous comparison because RGB-based
methods are unaware of such info.

Table 2. Comparisons with state-of-the-
art (SOTA) methods that leverage only
keypoint information on the VD Orig-
inal split. COMPOSER outperforms existing
methods and achieves a new highest record
(+0.7% improvement)

Model
Keypoint

Acc.
Actor Object

Zappardino et al. [119] " 91.0

GIRN [82]
" 88.4

" " 92.2

AT [29]
" 92.3

" " 92.8

POGARS [102]
" 93.2

" " 93.9

COMPOSER (ours)
" 93.7

" " 94.6

modality and has an accuracy of 89.7%, higher than all RGB-based methods.
COMPOSER with the keypoint-only modality obtains 95.1% accuracy and signifi-
cantly outperforms prior methods, yielding +5.4% improvement. These results
imply that the keypoint-only setup can reduce scene biases, and generalize bet-
ter than approaches relying on the RGB modality to testing data with different
visual characteristics from training.

We also report the results of these methods that we obtained on VD Original
split in Table 1. From this side-by-side comparison, the difference between the
Olympic and Original split is vivid. Current GAR methods have quite saturated
performances on the Original split of VD and the results are all very high (more
evidence later). Therefore, we recommend readers using the more challenging
VD Olympic split for future research on GAR. Note that the COMPOSER that
outperforms prior methods in Table 1 is only an ablated version of ours in that
not using the object token(s). In addition, GroupFormer [65] is currently the
best-performing method (Table 4 in Appendix) and its RGB-only variant has
the result of 94.1% accuracy on VD Original split. However, GroupFormer uses
additional scene features with the Inception-v3 backbone.

Comparisons of Methods Using Keypoint-only Modality In Table 2,
we compare COMPOSER with more GAR methods that use only the keypoint
modality on VD Original split following conventions. COMPOSER achieves a new
SOTA 94.6% accuracy with +0.7% improvement.
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Table 3. Comparisons with SOTA methods that use a single or multiple modalities
on the original split of VD and CAD. “Flow” denotes optical flow input, and “Scene”
denotes features of the entire frames. Fewer modalities indicates a stronger capability of
the model itself (fewer checks are better). The top 3 performance scores are highlighted
as: First, Second∗, Third . COMPOSER outperforms the latest GAR methods that use a
single modality (+0.7% improvement on VD and +2.8% improvement on CAD), and
performs favorably compared with methods that exploit multiple expensive modalities

Model
Modality Dataset

Keypoint RGB Flow Scene VD CAD

HDTM [47] " 81.9 81.5

CERN [90] " 83.3 87.2

stagNet [84] " 89.3 89.1

RCRG [45] " 89.5 N/A

SSU [8] " 90.6 N/A

PRL [41] " 91.4 N/A

ARG [107] " 92.5 91.0

HiGCIN [112] " 91.5 93.4

DIN [117] " 93.6 N/A

Zappardino et al. [119] " 91.0 N/A

GIRN [82] " 92.2 N/A

AT [29] " 92.3 N/A

POGARS [102] " 93.9 N/A

CRM [5] " " 93.0 85.8

AT [29] " " 93.0 92.8

Ehsanpour et al. [27] " " 93.1 89.4

GIRN [82] " " " 94.0 N/A

TCE+STBiP [116] " " " 94.7 N/A

SACRF [83] " " " " 95.0∗ 95.2

GroupFormer [65] " " " " 95.7 96.3

COMPOSER (ours) " 94.6 96.2∗

*Note: The best results of each method that were reported by the method authors are listed in the
table in order to be compared with ours most rigidly. ‘N/A’ stands for ‘not available’. Yellow shaded
rows highlight that the methods use just the RGB-based input, whereas blue for just keypoint.

Among these methods, Zappardino et al. [119] use CNNs to learn group ac-
tivity in Volleyball games, given sequence of person keypoint coordinates, their
temporal differences, and keypoint differences from each actor to the pivot-actor
that is selected by the model. The model does not model human-object interac-
tions. AT [29] does not consider human-object interactions either, but because
AT is also a Transformer-based model like ours, we can easily improve it by
feeding our object tokens as additional inputs to AT. Moreoever, GIRN [82] and
POGARS [102] are designed to leverage ball trajectory for learning group ac-
tivity in videos of Volleyball games. As shown in Table 2, the object keypoint
information can greatly boost the performance by providing additional context.
GIRN models interactions between joints within an actor and across actors, as
well as joint-object interactions. POGARS uses 1D CNNs to learn spatiotem-
poral dynamics of actors. AT, GIRN, and POGARS all use dot-product-based
attention mechanisms similar to ours, however, they fail to fully model the hier-
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Fig. 5. Qualitative results of COMPOSER on VD – showcasing attention matrices of
an instance in the “right pass” class (key actor is actor 0).

archical entities in the video (e.g., they all only use attention to learn person-wise
importance, and at most consider two scales: keypoint and person), and more
importantly, they lack explicit strategy to improve the multiscale representations
in order to aid the compositional reasoning of group activity recognition.

Comparisons of Methods Using Other Modalities We compare results
of COMPOSER with the best reported results of SOTA methods that use a sin-
gle or multiple modalities in Table 3 on both VD and CAD. COMPOSER still
achieves competitive performance – outperforming methods that use only RGB
signals, obtaining +0.7% improvement on VD and +2.8% improvement on CAD
if compared with methods that use a single modality (RGB or keypoint), and
performing favorably compared with methods that exploit multiple expensive
input modalities.

GroupFormer [65] has the highest accuracy on VD and CAD due to learning
the representations of the multiscale scene entities (person and person group)
with a Clustered Spatial-Temporal Transformer, and leveraging scene context
and multiple expensive modalities (FLOPs: GroupFormer 595M v.s. COMPOSER
297M; details are in Appendix C).
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Fig. 6. Qualitative results on CAD (video ID ‘10’). COMPOSER successfully predicts
‘Queueing’ even when the input keypoints are partially noisy due to occlusion.

4.3 Qualitative Results

We visualize the attention weights in Fig. 5. We highlight the tokens that the
model has mostly attended to at each scale (e.g., wrists of actor 0 at the person
keypoint scale). COMPOSER is able to attend to relevant information across differ-
ent scales, and it can produce interpretable results. In Fig. 6, we visualize the
keypoint input to COMPOSER on a CAD instance. COMPOSER implicitly learns the
human motion patterns from the keypoint features to handle partial occlusions.

Please check Appendix for more analyses including ablation studies, confu-
sion matrices, parameter sensitivity analyses w.r.t. the number of scales and the
number of prototypes, more qualitative results including failure cases, etc.

5 Conclusion

We propose COMPOSER that uses a Multiscale Transformer to learn compositional
reasoning at different scales for group activity recognition. We also improve the
intermediate representations using contrastive clustering, auxiliary prediction,
and data augmentation techniques. We demonstrate the model’s strength and
interpretability on two widely-used datasets (Volleyball and Collective Activity).
COMPOSER achieves up to +5.4% improvement with just the keypoint modality.

One limitation is that videos with severe occlusions remain challenging for
COMPOSER like other existing methods, due to errors from detecting keypoints.
Adopting 3D keypoints or stronger backbones that estimate keypoints directly
from the video [80,2] can help to address the issue. Possible future directions
include 1) expanding our methods to more complex scenarios, such as crowd un-
derstanding that may require modeling additional hierarchical scales; and 2) ex-
ploring effective multimodal fusion methods in order to use additional modalities
like RGB but without suffering from scene biases, since RGB can be beneficial
for activities that involve significant interaction with the background scene.
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This appendix is organized as follows:

A Results Using Different Num. of Prototypes
B Ablation Study
C Efficiency Comparison
D Additional Qualitative Results
E Confusion Matrices and Failure Cases
F Method and Implementation Details
G Extended Discussion on Related Work
H Discussion of COMPOSER (e.g., Societal Impact)

A Results Using Different Num. of Prototypes

In Table 1, we evaluate the impact of the number of prototypes K (i.e., the
number of clip clusters) that is used for contrastive clustering learning on the
GAR accuracy of COMPOSER. We use the Original split of the Volleyball dataset
for this evaluation. We observe that varying the number of prototypes does not
affect much the performance. The performance first improves as the number of
prototypes increases, then decreases as the number of prototypes keeps increas-
ing. The number of prototypes has little influence as long as it is reasonably
“enough”. The practice is to set the number of prototypes at least one order of
magnitude larger than the true number of classes in the dataset [11]. Hence, for
simplicity, we do not spend extensive efforts in fine-tuning COMPOSER w.r.t. this
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Table 1. Impact of the number of prototypes. GAR accuracy of COMPOSER on
the Original split of the Volleyball dataset using different number of prototypes.

Number of Prototypes 10 50 100 1, 000 5, 000 10, 000

GAR Accuracy (%) 94.02 94.54 94.69 94.62 94.54 94.32

(a) (b)

Fig. 1. t-SNE visualizations on the Volleyball dataset show that the clip embedding
space learned by COMPOSER using different number of prototypes: (a) 10 prototypes,
and (b) 1000 prototypes. Best viewed in color. More number of prototypes can lead to
a better separation of the clips in distinct group activity classes.

hyper-parameter; results reported in the main paper are from COMPOSER trained
using 1, 000 prototypes for all datasets and splits.

We visualize the clip embedding space (after t-SNE 2D projection) learned
by COMPOSER using 10 prototypes and 1000 prototypes in Fig. 1 (a) and (b),
respectively. We take the representation of the CLS token from the last scale and
the last Multiscale Transformer block as the representation of the clip to produce
the embedding space visualization. In Fig. 1, each dot represents a test clip and
the color of the dot indicates the group activity label of the clip. A higher number
of prototypes can lead to a better grouping of clips with the same group activity
class, as well as a better separation of clips in different group activity classes;
this accords with the quantitative results shown in Table 1.

B Ablation Study

We conduct ablation experiments to verify the effectiveness of proposed tech-
niques; results are in Table 2 (methodology details are in Appendix F.4).
Contrastive clustering and scale agreement regularize the multiscale
representations. As demonstrated in Table. 2, performance drops without the
contrastive clustering learning. The swapped prediction setup helps the model
to maintain consistency across representations of the multiple scales of the same
clip, which regularizes the intermediate representations.

We also experiment with the ‘Label Consistency’ method [89] that minimizes
the L2 distance between 2 views of an instance in the logit space. Replacing



Compositional Reasoning of Group Activity in Videos 25

Table 2. Ablation study of COMPOSER on Volleyball original split. The ablation
study verifies the effectiveness of each proposed technique.

Ablation Test Acc. (%) ↑
No Clustering 93.4
Label Consistency for Scale Agreement 93.9

1-Scale: Keypoint 91.2
2-Scale: Keypoint + Person 93.2
3-Scale: Keypoint + Person + Interaction 93.9

No Actor Dropout 94.0
No Horizontal Flip 94.0
No Horizontal Move 94.2
No Vertical Move 94.2

No Auxiliary Prediction 93.3
No Multiscale Transformer 88.1

Transformer Encoder Reverse Order 86.8
Transformer Encoder Parameter Sharing 93.4
All Tokens to One Transformer Encoder 92.4
Time-Varying Person Grouping 92.8

COMPOSER (our full model) 94.6

contrastive clustering with Label Consistency for scale agreement, result is better
than the previous ablation, but worse than COMPOSER. Better performance of
COMPOSER can be attributed to the additional benefits of the clustering loss,
which draws clips that are semantically related close together by comparing with
the prototypes. Both experiments indicate that encouraging scale agreement
can bring benefits for the multi-scale learning models, which is unfortunately
neglected by prior works.

Greater number of scales yields more information and an effective
scale agreement. We find that increasing the number of scales leads to a
higher accuracy. More scales indicates more information about the entities in
the scene. Besides, given more scales, hierarchical representations are able to be
better maintained, and techniques such as contrastive clustering and auxiliary
predictions are more effective.

Data augmentations increase the training data size and inject benign
noises, leading to generalization. Results in Table 2 show the gains brought
by each data augmentation technique described in Sec. 3.4 of the main paper.
Among the four types of data augmentation, Horizontal Flip (which is commonly
used by existing works [119,102]) and Actor Dropout are the most critical ones.
Even though data augmentation is less effective than other techniques proposed,
it increases the training data size and injects noises that help model to generalize.

Auxiliary prediction aids learning the intermediate representations.
For the ‘No Auxiliary Prediction’ ablation, the loss of group activity is only
computed from the clip token from the last scale of the last Multiscale Trans-
former (note that the person action loss and clustering loss are still in use).
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Performance of this ablation largely drops, indicating auxiliary prediction is a
simple but yet effective technique.

Multiscale Transformer learns higher-level knowledge of the video
by compositionally reasoning over concepts from finest-grained to
coarsest-grained. We design an ablation to remove Multiscale Transformer.
Specifically, the group activity classifier directly takes features of the object to-
ken and person tokens (learned from features of keypoint tokens) as an input,
and the person action classifier takes the features of person tokens as an input.
The outcome of this ablation is worse performance than the 1-scale ablation that
does not even use person features and person action labels – which indicates the
importance of relational reasoning.

Misc. Unlike previous works [27,58], person-to-group association mechanism
is not our focus. Hence, we use heuristics [82] for the Volleyball dataset, K-
means [65] for the Collective Activity dataset, and set g′=2 without tuning. With
K-means, actors are mapped to groups adaptively in each Multiscale Transformer
block as person representations are refined. We have experimented with time-
varying person grouping with K-means, and the result is 92.8% on the original
split of the Volleyball dataset. For this experiment, since we need person and
group representations at each timestamp, the number of tokens is increased (mul-
tiplied by T ) for the 2 transformer encoders, which potentially leads to issues
such as over-smoothing [117] and raises the challenge for attention. We hypoth-
esize that a carefully-crafted mechanism for learning spatio-temporal relations
is required for time-varying person grouping.

We have experimented with Multiscale Transformer variations. In Multiscale
Transformer, 4 different transformer encoders separately model the contextual
information of each scale, which eases learning (because the information granu-
larity and features across scales can vary significantly). Parameter-sharing across
the 4 encoders yielded a result of 93.4% on the original split of the Volley-
ball dataset, and feeding all tokens to one encoder obtained 92.4%. The order
of encoders in Multiscale Transformer is in accordance with the hierarchy of
person-related tokens, from fine to coarse. This allows COMPOSER to compose the
high-level representations from low-level ones and distill the knowledge. One can
perform grid search to find the optimal order of the 4 encoders, but that will lead
to 24 permutations which require lots of resources and runtime. We have per-
formed an experiment with the reverse order (representations of coarser tokens
are broadcast to finer tokens), and the result is 86.8%, which is much worse.

C Efficiency Comparison

Backbone efficiency comparison to support the keypoint-only setup.
Backbones used by prior works vary a lot (see Table 4 and Table 5). Because
AT [29] is a Transformer-based model like ours and it has reported result of
using the keypoint-only modality, we follow AT to use the HRNet [105] as the
person keypoint estimation backbone.
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Table 3. Efficiency Comparison (FLOPs). Please see details in Appendix C.

Backbone GAR Model
HRNet VGG-19 VGG-16 Inception-v3 ResNet-18 AlexNet COMPOSER GroupFormer [65]
0.9 T 3.6 T 2.8 T 0.7 T 0.3 T 0.1 T 297 M 595 M

*Note: ‘T’ stands for trillion and ‘M’ for million. Ours are marked in bold.

We also report the results of COMPOSER using POGARS’s person keypoint
estimation backbone – Hourglass [?] since POGARS [102] is the keypoint-only
method that has the closest result to ours on the Volleyball dataset. Comparing
COMPOSER with POGARS (both use Hourglass as the backbone): on VD Olympic
split COMPOSER 92.9% v.s. POGARS 89.7%; and on VD Original split COMPOSER
94.3% v.s. POGARS 93.9%. The superiority of COMPOSER is not affected because
COMPOSER is able to address noisy estimated keypoints and disregard inaccurate
keypoints by modeling attention over the keypoints (unlike POGARS or AT that
just model attention at the person scale).

To support the keypoint-only setup, we compute the FLOPs for HRNet (our
keypoint backbone) and RGB backbones used by prior works when obtaining
features of all persons in a clip on the Volleyball dataset. FLOPs are: HRNet
0.9T, VGG-19 [93] 3.6T, VGG-16 [93] 2.8T, Inception-v3 [?] 0.7T, ResNet-
18 [37] 0.3T, and AlexNet [?] 0.1T (Table 3). VGG-19 and VGG-16 are more
computational expensive than HRNet. Our method is agnostic to the type of
the keypoint estimation backbone and robust w.r.t. noisy estimated keypoints.
Therefore, real-time applications can use an efficient backbone.
Efficiency comparison with SOTA GAR methods. We also compare
FLOPs of prior Transformer-based GAR methods with ours. For a fair compar-
ison, the methods all have 2 blocks of their respective GAR reasoning module
(e.g., Multiscale Transformer in COMPOSER and the CSTT module in Group-
Former) and share hyper-parameters of the Transformers inside (e.g., dimension
of the FFN layer inside Transformer). In addition, computation spent on person
feature extraction is excluded since different backbones can be used.

FLOPs are (given a Collective Activity dataset’s input): Ours 297M, Group-
Former [65] 595M, and AT [29]] 17M where ‘M’ stands for million. While AT is
the most efficient one, its efficacy (only 92.8% on Collective Activity) and gener-
alization are unsatisfactory. GroupFormer is the most computational expensive
one due to 5 Transformers inside its CSTT module and leveraging image scenes
– even we only report FLOPs for its most basic version that leverages the least
signals possible (RGB + Scene).

Note that the COMPOSER variant that uses RGB modality (mentioned in
the main paper) has 127M FLOPs and is more efficient than COMPOSER that
uses keypoints because the former only models 3 scales (person, interaction and
group). To further reduce latency for real-life applications (e.g., on-device sce-
narios), we can have a light-weight COMPOSER variant that only models one scale
during inference or uses smaller hidden dimensions and yet retains the most
efficacy and generalization by using techniques like knowledge distillation [?].
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Table 4. Detailed comparisons between our results and the reported SOTA methods’
results on the Original split of the Volleyball dataset. We have made an effort to
collect and list results of prior works using various backbones and modalities. Note
that the backbones used by prior works vary a lot. The top 3 performance scores are
highlighted as: First, Second∗, Third . COMPOSER outperforms the latest GAR methods
that use a single modality (+0.7% improvement), and performs favorably compared
against methods that exploit multiple expensive modalities (Appendix C)

Method
Modality Backbone

Acc. ↑ (%)
Keypoint RGB Flow Scene Keypoint RGB/Flow/Scene

HDTM [47] " – AlexNet 81.9

CERN [90] " – VGG-16 83.3

stagNet [84] " – VGG-16 89.3

RCRG [45] " – VGG-19 89.5

SSU [8] " – Inception-v3 90.6

PRL [41] " – VGG-16 91.4

AT [29] " – I3D 91.4

" – VGG-16 91.9

" – Inception-v3 92.5ARG [107]
" – VGG-19 92.6

" – AlexNet 88.6
HiGCIN [112] " – ResNet-18 91.5

" – ResNet-18 93.1
DIN [117] " – VGG-16 93.6

Zappardino et al. [119] " OpenPose – 91.0

GIRN [82] " OpenPose – 92.2

AT [29] " HRNet – 92.3

POGARS [102] " Hourglass – 93.9

CRM [5] " " – I3D 93.0

Ehsanpour et al. [27] " " – I3D 93.1

AT [29]
" " – I3D 93.0

" " HRNet I3D 93.5

" " HRNet I3D 94.4

GIRN [82]
" " OpenPose Inception-v3 93.5

" " OpenPose Inception-v3 93.0

" " " OpenPose Inception-v3 94.0

TCE+STBiP [116]

" " HRNet Inception-v3 92.9

" " – Inception-v3 93.3

" " " HRNet Inception-v3 94.1

" " HRNet VGG-16 92.9

" " – VGG-16 94.1

" " " HRNet VGG-16 94.7

SACRF [83]
" " " – I3D 94.5

" " " " AlphaPose I3D 95.0∗

GroupFormer [65]
" " – Inception-v3 94.1

" " " – I3D 94.9

" " " " AlphaPose I3D 95.7

" Hourglass – 94.3COMPOSER (ours)
" HRNet – 94.6

*Note: “Flow” denotes optical flow input, and “Scene” denotes additional image context features of
the entire frames (fewer checks are better). Yellow shaded rows highlight that the methods use just
the RGB-based input, whereas blue for just keypoint.
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Table 5. Detailed comparisons between our results and the reported SOTA methods’
results on the Collective Activity dataset. The top 3 performance scores are high-
lighted as: First, Second∗, Third . COMPOSER outperforms the latest GAR methods that
use a single modality (+2.8% improvement), and performs favorably compared against
methods that exploit multiple expensive modalities (ours is the second best)

Method
Modality Backbone

Acc. ↑ (%)
Keypoint RGB Flow Scene Keypoint RGB/Flow/Scene

HDTM [47] " – AlexNet 81.5

CERN [90] " – VGG-16 87.2

stagNet [84] " – VGG-16 89.1

" – VGG-16 90.1
ARG [107] " – Inception-v3 91.0

" – AlexNet 92.5
HiGCIN [112] " – ResNet-18 93.4

CRM [5] " " – I3D 85.8

Ehsanpour et al. [27] " " – I3D 89.4

AT [29]
" " HRNet I3D 91.0

" " HRNet I3D 91.2

" " – I3D 92.8

SACRF [83]
" " " – I3D 94.6

" " " " AlphaPose I3D 95.2

GroupFormer [65]
" " – Inception-v3 93.6

" " " – I3D 94.7

" " " " AlphaPose I3D 96.3

COMPOSER (ours) " HRNet – 96.2∗

*Note: “Flow” denotes optical flow input, and “Scene” denotes additional image context features
of the entire frames (fewer checks are better). Yellow shaded rows highlight that the methods use
just the RGB-based input, whereas blue for just keypoint. We are the first to report the result of a
keypoint-only method on this dataset.

D Additional Qualitative Results

We visualize the attention matrices produced by the last Multiscale Trans-
former block in COMPOSER of CAD test clips in different group activity classes
in Fig. 2, 5, 6 and 7. In Fig. 5 of the main paper, we visualize the attention
matrices of a VD test clip in group activity class “pass”. We provide the same
visualization for the other 3 main group activity classes of VD in Fig. 8, 9 and 10.

In the figures, we highlight the tokens that COMPOSER has mostly attended to
at each scale (darker color denotes larger attention weights). Each figure contains
rich information. Please zoom in on the images to appreciate the details. Here,
we summarize the main findings:

1. Actor-related tokens associated with the key person(s) are often identified
as the most important tokens for the CLS and object token by COMPOSER
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Fig. 2. Qualitative results of COMPOSER on CAD – showcasing attention matrices
of a test set instance in the “talking” class. The person to person group mapping
identified by COMPOSER, estimated keypoints from the backbone, and the ground truth
person bounding boxes with action labels are also shown on the left side of the figure.

(e.g., Fig. 8, 9, etc). In certain cases, the object token is also identified as
important (e.g., as shown in Fig. 9, the object token ‘ball’ is identified as
important at scale 1, 3 and 4). COMPOSER is able to attend to relevant entities
across different scales and can produce interpretable results.

2. COMPOSER learns to recognize the group activities based upon the unique
characteristics of each group activity class. E.g., in Fig. 10, the pattern of
the attention weights of the winpoint class at scale 3 is quite different from
the pattern observed in the other 3 main group activity classes in VD. Recog-
nition of the other group activities in VD (e.g., spike), is often determined by
a key player who is performing the key action (e.g., spiking). In contrast, the
winpoint group activity is not heavily dependent on one or two key players;
instead, it is defined by the overall person-to-person interactions of the team
that just scored. As shown in Fig. 10, person-to-person interaction tokens
formed by players in the right team tend to closely attend to each other.

3. On CAD, COMPOSER has identified interesting person-to-group mappings as
shown in Fig. 2, 5, etc. On VD, we find that at the group scale, the CLS and
object tokens often mostly attend to each other, and the two teams often
mostly attend to each other. We posit that this is because, at the previous
three scales, the CLS and object tokens mostly attend to actor-related tokens.
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The object token, which contains less correlated information, then becomes
the most important signal at scale 4 for the CLS token in order to correctly
recognize the group activity.

E Failure Cases and Confusion Matrices

E.1 Failure Case Analysis

Volleyball. Through examining failure cases of COMPOSER, we find numerous
mislabeled test clips. We coin these cases as false failure cases (i.e., the annotated
label is wrong but the prediction from COMPOSER is correct). Sometimes the
annotation of the team is wrong (e.g., a test clip with the left set group activity
is annotated as right set as shown in Fig. 11), and sometimes the annotated
main group activity is wrong (e.g., a test clip with the right set group activity
is annotated as right spike as shown in Fig. 12). As a result, the models that
have achieved high accuracy on the Original split of VD might capture misleading
noises and cannot generalize, and therefore the pursuit of beating SOTAmight be
pointless. For future research, proposing methods that make use of RGB signals
but overcome scene biases on the Olympic split is a recommended direction.

We visualize two true failure cases of COMPOSER in Fig. 13 and Fig. 14. The
wrong prediction of COMPOSER made on case shown in Fig. 13 could be attributed
to the fact that the arms of actor 0 is occluded. In Fig. 14, COMPOSER fails to
identify which team is performing the group activity spike. However, we notice
a major change in the camera location of this test clip, which causes this test
clip possibly to be difficult even for humans to make a correct prediction.
Collective Activity. We visualize several failure cases of COMPOSER on the test
set of CAD in Fig. 15, 16, 17, and 18. Failures of COMPOSER can be attributed
to severe occlusions (Fig. 15), misleading movement of actors (Fig. 16 and 17)
and the current use of a relatively short temporal window for each clip (Fig. 18),
which suggest ways to further improve COMPOSER, e.g., addressing the issue of
severe occlusion, using more frames per clip with attention-based relational rea-
soning in both spatial and temporal domains, etc.

E.2 Confusion Matrix Analysis

We show the confusion matrices of COMPOSER in Fig. 3. On the Volleyball dataset
(the Original split), for each group activity class COMPOSER achieves an accuracy
over 90% with the lowest accuracy for the right set class. Most failures emerge
from discriminating the set, pass, and spike activities which can be a result of
highly similar actions or positions of the key player in some clips [29,41,112]. Oc-
casionally, the model struggles to distinguish which team (left or right) performs
the activity. We hypothesize that adding more object tokens/keypoints such as
the keypoints of the net to COMPOSER may help to address this problem. Nev-
ertheless, different camera positions of some clips in the dataset (e.g., Fig. 14)
might cause the difficulty for a model to learn which team performs the activity.
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(a) (b)

Fig. 3. Confusion matrices of COMPOSER on (a) the Volleyball dataset (the Original
split) and (b) the Collective Activity dataset.

On the Collective Activity dataset, COMPOSER occasionally mistakes waiting to
moving, which may because the current temporal dynamics of clips is too short
to catch differences between the two classes [116] and a lot more examples of
moving than waiting in the dataset (more than twice more).

F Method and Implementation Details

F.1 Transformer

We briefly describe the Transformer encoder [103] used in Multiscale Transformer
in this subsection. The basic components of the Transformer encoder include
1) Multi-head Self-Attention (MSA), 2) Multi-Layer Perceptron (MLP), and 3)
Skip Connection [37], Dropout [97] and Layer Normalization [7] (Add & Dropout
& LN).
MSA. Central to the Transformer encoder is the self-attention function. In the
self-attention function, the input X ∈ Rn×d is first linearly transformed to three
parts, i.e., query Q ∈ Rn×dk , key K ∈ Rn×dk and value V ∈ Rn×dv , where n
denotes the number of tokens in the input sequence, and d, dk and dv are the
representation dimensions of the input, query (or key), and value, respectively.
The Scaled Dot-Product Attention is applied on Q, K, and V :

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (1)

Then, a linear layer is used to produce the output. We use h paralleled heads of
the Scaled Dot-Product Attention to increase the representation power. Specif-
ically, MSA splits the query, key and value for h times and performs the self-
attention function in parallel, and then the output values of each head are con-
catenated and linearly projected to form the final output [35].
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MLP. The MLP is for feature transformation and non-linearity:

MLP(X) = σ (XW1 + b1)W2 + b2 (2)

where W1 ∈ Rd×dm and W2 ∈ Rdm×d are weights of the two fully-connected
layers, b1 ∈ Rdm and b2 ∈ Rd are the bias terms, and σ(. . . ) is the non-linear
activation function such as ReLU [30] or GELU [38].

Add & Dropout & LN. The output from MSA (or MLP) is added with the
input of MSA (or MLP) to enforce the skip connection. Then, a dropout layer
is used, followed by the Layer Normalization (LN) that enables stable training
and faster convergence. Layer normalization is applied over each sample x ∈ Rd

as follows:

LN(x) =
x− µ

δ
◦ γ + β (3)

where µ ∈ R and δ ∈ R are the mean and standard deviation of the features,
respectively, ◦ denotes the element-wise multiplication, γ ∈ Rd and β ∈ Rd are
learnable affine transform parameters for scaling and shifting, respectively.

Given the input X, the computations in order in the Transformer encoder
are: MSA, Add & Dropout & LN, MLP, and Add & Dropout & LN.

F.2 Keypoint Initial Representation

Keypoint is the finest-grained actor-related entity that we consider for GAR. In
this subsection, we describe the keypoint initial representation (i.e., representa-
tions of the input keypoint tokens of the first Multiscale Transformer layer). As
described in the main paper, representations of actor-related tokens in coarser
scales are learned and aggregated from that of the finer scales.

A keypoint in a frame has the information of keypoint type, as well as key-
point coordinate in both of the image space and the time space. We use three
GCN [56] layers to map each person keypoint type into a learned vector in or-
der to encode the intrinsic connections of different keypoint types. We apply
feature standardization to the raw 2D keypoint coordinate and the temporal
difference of coordinates in consecutive two frames. We also normalize the key-
point coordinate in a person-wise manner to account for rotation, translation,
and scale differences [119,98]. In addition, we use the Learned Fourier Positional
Encoding [101] to map each image coordinate into a learned vector, and use the
Learned Absolute Positional Encoding to learn a vector for each time coordinate.
To mitigate the issue of noisy estimated keypoints, we use the temporal Object
Keypoint Similarity (OKS) proposed in [95], and use the mean OKS scores of
each person as additional features. The above procedure is summarized in Fig. 4.
These features are concatenated to form the initial composite representation of
a person keypoint in a frame, and a keypoint token is represented by concate-
nation and Feed Forward Network (FFN) based transformation of keypoints’
representations in all timestamps.
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Fig. 4. Representation of a person keypoint in a particular frame.

F.3 Implementation Details of COMPOSER

For annotation parsing and video preprocessing (e.g., obtaining clips from a
long CAD video), we follow prior works [117,107]. On the Volleyball dataset,
annotations of group activity, players’ bounding boxes and their actions in the
middle frame of each clip are provided. Person tracklet data is provided by
[87]. For the Collective Activity dataset, annotations include actors’ bounding
boxes and their action labels on the center frame of every ten frames and group
activity labels for every ten frames. In order to make a fair comparison with
related works [116,117,29,107], we use T = 10 frames as the input to our model
for both training and testing on both datasets.

We use HRNet [105]5 to obtain estimated person keypoints following [29,116]
(j′ = 17). There are a total of 17 different keypoint types: nose, left eye, right eye,
left ear, right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist,
right wrist, left hip, right hip, left knee, right knee, left ankle and right ankle. On
the Volleyball dataset, the maximal number of actors in a video p′ = 12, and on
Collective Activity, p′ = 13. On both datasets, the number of person groups per
video g′ = 2. On Volleyball, actors are grouped into the two person groups by
heuristics, i.e., according to the horizontal positions of the actors, the left most
6 actors form a sub-group and the rest actors form the other sub-group. We find
that using clustering algorithms such as K-means (given the coordinates of the
actors as features) can generate similar results as the heuristics on the Volleyball
dataset. Hence, we choose to use the heuristics for simplicity for Volleyball, and

5 https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
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use K-means6 to form person groups on the Collective Activity dataset (given
the input of the learned person representations from COMPOSER).

On the Volleyball dataset, the object keypoints are from the ball trajectories
annotated by [82] (e′ = 1)7. The initial representation of the object keypoint
is similar to that of the person keypoint, i.e., a concatenation of the time posi-
tional encoding, Fourier positional encoding, and standardized keypoint coordi-
nate and temporal difference. The initial object token is formed by concatena-
tion and FFN-based transformation of object keypoints’ representations in all
timestamps. On the other hand, we do not use the object token for the Collec-
tive Activity dataset because the Collective Activity dataset does not have any
human-object interactions.

On both datasets, the number of Multiscale Transformer blocks M is set as
2, the number of attention heads of the Transformer encoder at each scale is set
to 2, 8, 2 and 2, respectively, and the dropout rate of the Transformer encoder at
each scale is set to 0.5, 0.2, 0.2 and 0, respectively. We find that a smaller dropout
rate in the coarser scales tends to yield a better performance. The dimension of
the MLP layer in all Transformer encoders is set to 1024 (i.e., dm = 1024), and
the non-linear activation function is ReLU. The hidden dimension d = 256 (dk,
dv and d are equal) on Volleyball and d = 128 on Collective Activity. Because
we focus on semantic relational reasoning over temporal relation capturing, we
use MLPs with 1 hidden layer of dimensionality d to flatten out the time axis for
each entity – in this way, track-based representations are formed for each entity.
To aggregate the token representations from a finer scale to the coarser scale,
FFNs are used when the number of tokens for aggregation at that scale is fixed
(e.g., 2 persons aggregates to an interaction), otherwise summation is used (e.g.,
the number of persons to form a group varies on the Collective Activity dataset
due to K-means). The cross entropy loss is used during training for both group
activity and person action classification. We use the Adam optimizer [55] and
train the model for 45 epochs with an initial learning rate 0.0005 and decrease
the learning rate to 0.0001 at epoch 40. The weight decay is 0.001, λ is 3, and
batch size is 256. Following [11], the temperature parameter τ = 0.1, ε = 0.05,
and the number of iterations of the Sinkhorn-Knopp algorithm 8 is set to 3. The
number of prototypes K is 1000 for all experiments except the ones described in
Appendix A. In data augmentations, the range of random perturbation is set to
1 pixel location. We use the PyTorch9 Python library.

F.4 Implementation Details of Ablation Studies

In this subsection, we describe the methodology of the ablations that we present
in Appendix B in details. For all of the ablations, we use the same set of hyper-
parameters as our full model.

6 https://github.com/subhadarship/kmeans_pytorch
7 For real-world data, one can resort to ball trajectory extraction [1,79] for sports

videos or object keypoint detection tools [42,9,69].
8 https://github.com/facebookresearch/swav
9 https://pytorch.org

https://github.com/subhadarship/kmeans_pytorch
https://github.com/facebookresearch/swav
https://pytorch.org
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No Clustering. The only difference from this ablation to our full model COMPOSER
is the loss function used in training. Instead of using Equation (6) (in the main
paper) as the loss function, this ablation uses the following loss function:

Ltotal =

M−1∑
m=1

LgroupAux + λ (LgroupLast + Lperson) (4)

Label Consistency [89] for Scale Agreement. Similar to the previous ab-
lation, the only difference from this ablation to our full model COMPOSER is the
loss function used in training, which is formulated as follows:

Ltotal =

M−1∑
m=1

LgroupAux + λ (LgroupLast + Lperson + Lconsistency) (5)

where Lconsistency represents the loss term that minimizes the L2 distance be-
tween 2 scales of a clip in the logit space. Specifically, for every two pairs of
scales, we compute the L2 loss given the two sets of GAR logits of the two
scales. The Lconsistency term is the mean of such L2 losses over all pairs of scales.
1-Scale: Keypoint. For this ablation, there is only one Transformer encoder
in the Multiscale Transformer block, and the tokens to the Transformer encoder
are:

Scale 1:
{
[CLS] , e1, · · · , ee′ ,k1

1, · · · ,k
j′

p′

}
. (6)

Since only the keypoint tokens are refined by the Multiscale Transformer block
in this ablation and there is only 1 scale, this ablation uses the following loss
function:

Ltotal =

M−1∑
m=1

LgroupAux + λLgroupLast (7)

2-Scale: Keypoint + Person. For this ablation, there are two hierarchical
scales in the Multiscale Transformer block, and the tokens to the Transformer
encoders are:

Scale 1:
{
[CLS] , e1, · · · , ee′ ,k1

1, · · · ,k
j′

p′

}
,

Scale 2: {[CLS] , e1, · · · , ee′ ,p1, · · · ,pp′} .
(8)

This ablation uses the same loss function as our full model except that the
number of pairs of scales for swapped prediction is only 1, i.e., pair scale1-scale2.
3-Scale: Keypoint + Person + Interaction. For this ablation, there are
three hierarchical scales in the Multiscale Transformer block, and the tokens to
the Transformer encoders are:

Scale 1:
{
[CLS] , e1, · · · , ee′ ,k1

1, · · · ,k
j′

p′

}
,

Scale 2: {[CLS] , e1, · · · , ee′ ,p1, · · · ,pp′} ,
Scale 3:

{
[CLS] , e1, · · · , ee′ , i1, · · · , ip′×(p′−1)

}
.

(9)
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This ablation uses the same loss function as our full model except that the
number of pairs of scales for swapped prediction is 3, i.e., pair scale1-scale2, pair
scale1-scale3, and pair scale2-scale3.
No Auxiliary Prediction. The only difference from this ablation to our full
model COMPOSER is the loss function used in training. This ablation uses the
following loss function:

Ltotal = LgroupLast + Lperson + Lcluster (10)

No Multiscale Transformer. In this ablation, the group activity classifier sim-
ply takes features of the initial object token and person tokens as inputs, and
the person tokens are aggregated from the initial representations of keypoint to-
kens through concatenation and FFN. In addition, features of the person tokens
are the inputs to the person action classifier. No Transformers are used in this
ablation. Due to the lack of relational reasoning performed at multiple scales,
this ablation uses the following loss function:

Ltotal = LgroupLast + Lperson (11)

F.5 Miscellaneous

The Original split of the Volleyball dataset allows the GAR method to lever-
age scene biases in order to achieve a high accuracy, on the other hand, the
Olympic split can better test the model generalization ability. None of the exst-
ing RGB-baesd GAR methods have performed experiments using the Olympic
split. To obtain the results of prior RGB-based GAR methods on the Olympic
split of the Volleyball dataset (Table 1 in the main paper), our implementa-
tions of PCTDM [110], SACRF [83], AT [29], ARG [107], TCE-STBiP [116] and
DIN [117] are based on the public available codebase1011 and we have verified
the implementations through obtaining the results of these methods on the Orig-
inal split of the Volleyball dataset and then comparing with the reported results
from authors of each method. For VGG-16 [93], we use RoIAlign [36]12 to ob-
tain the person regional features and then use these person features to predict
the individual actions and the group activity. All of these RGB-based methods
(including our COMPOSER RGB-based variant) use the RGB-only modality and
share the same VGG-16 backbone.

G Extended Discussion on Related Work

Group Activity Recognition. Early work on GAR relies on handcrafted fea-
tures [20,61,34,16,21,18,74]; yet notable progress has been made by Deep Learn-
ing (DL) based approaches [47,25]. We review DL-based methods and refer read-
ers to the comprehensive review of GAR presented in [108].

10 https://github.com/JacobYuan7/DIN-Group-Activity-Recognition-Benchmark
11 https://github.com/wjchaoGit/Group-Activity-Recognition
12 https://github.com/longcw/RoIAlign.pytorch

https://github.com/JacobYuan7/DIN-Group-Activity-Recognition-Benchmark
https://github.com/wjchaoGit/Group-Activity-Recognition
https://github.com/longcw/RoIAlign.pytorch
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Early DL-based methods use Convolutional Neural Networks (CNNs) to
extract the low-level visual features and then apply Recurrent Neural Net-
works such as LSTM [40] for temporal modeling [106,91,66,53]. Since learn-
ing inter-person interactions is essential for GAR [108], much of the recent
research explores how to capture the contextual information about the actor
and their relations [46,6,107,41,83]. Several works tackle this problem from a
graph-based perspective [46,71,113,112] such as applying Graph Convolutional
Networks (GCNs) [56] for deep relationship modeling [107]. More recent works
utilize attention modeling [84,109,71,116] including using Transformers [29,65] to
perform relational reasoning, with a focus on determining the most critical per-
sons [107,29,83,116], groups [27,65], or interactions [113]. Existing works in the
field of GAR have primarily used RGB- and/or optical-flow-based features with
RoIAlign [36] to represent actors [112,84,107,8]. A few recent works replace or
augment these features with keypoints/poses of the actors [70,14,102,65]. Some
only use the numerical coordinate-based keypoint representation [119,102,82,83]
while others use a high-dimensional vector from a deep pose backbone [29,116]
which is not as efficient. In this paper, we use Transformers [103] for higher-
order relationship modeling and use only the light-weight coordinate-based key-
point representation. Our work differs from prior methods in that we propose a
Multiscale Transformer block to hierarchically reason about entities at different
semantic scales and we aid learning group activities by improving the multiscale
representations.

Action Recognition and Keypoint-based Prediction. Action Recognition
is one of the primary tasks in video understanding. There has been rapid progress
in recent years, starting from recognition of the low-level atomic actions per-
formed by an individual (e.g., hand-waving, dancing, jumping), to paired-actions
being acted by two persons [81,92,118,57] (e.g., shaking hands, hugging, punch-
ing), towards group activities that encompass many actors at once [20,47,86,82]
(e.g., attack and defense in a sports game, pedestrians queuing). Our paper fo-
cuses on the most spatially complex scenarios, where multiple interacting individ-
uals form the group activity. In addition, keypoint-based action recognition has
drawn much attention [64,114,122,78,121]. Keypoint-based representation can be
regarded as a high-level representation for dynamic behaviors, and is preferred
due to benefits such as being compact and robust to variations of viewpoints, ap-
pearances, and surrounding distractions [23,67]. We study keypoint-based group
activity recognition. We propose to use techniques including auxiliary prediction
and data augmentations that can aid learning group activity from the keypoint
modality.

Compositionality and Multiscale Learning. Compositionality is an active
field of research in computer vision (CV) [120,54,111,99], natural language pro-
cessing [96,104,48,24] and machine reasoning [44,43,10]. In terms of understand-
ing videos centered on human actions, compositionality can be studied from
different lenses, e.g., through formulating an activity as compositions of atomic
actions temporally [85,32,15,72] or semantically [88,100], or decomposing actions
by action-based aspects (verbs) and object components (noun) [50,51,73,62,72].
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We tackle compositional video understanding by formulating a visual-semantic
hierarchy, where each semantic hierarchy is regarded as representation of the
video at a particular scale. Such an idea of multiscale learning has been a long-
standing topic in CV as well [64,63,31,33]. Recently, researchers have started
to introduce the concept of multiscale learning to Transformers [28,68,35] by
operating self-attention over various scales of resolutions and/or channels, in
order to obtain a multiscale pyramid of features often observed in CNNs. Dis-
tinct from prior works, we design COMPOSER that models semantic scene entities
at different hierarchical scales to learn group activities effectively. COMPOSER is
the first Transformer-based method with explicit multiscale modeling for GAR
that improves the musicale representations with a contrastive clustering based
objective.

H Discussion of COMPOSER

Motivation Intuitively, each scale provides enough information for GAR; only
the information granularity varies, which causes recognition confidence to vary
scale by scale. Therefore, we consider scales as different but correlated views
of the clip, and utilize multiscale contrastive clustering learning (MCCL) to
allow one scale to complement another. This allows learning better compositional
structures and higher-order representations.

Pull close: Equation 2 in the main paper (swapped prediction) trains the
model to produce multiscale representations of 1 clip such that the cluster as-
signment of the clip representation at one scale can be predicted from the clip
representation at another scale, allowing representations of the same clip to be
pulled close.

Pull away: If 2 clips are semantically different, as Equation 6 in the main
paper includes the supervised GAR loss and the unsupervised MCCL loss, the
2 clips will be put to different clusters and pushed further as training goes.

Key Insight The key novelty of COMPOSER is that the model learns consistent
multiscale representations. The idea of considering scales as views and encourag-
ing scale agreement is applicable to numerous Computer Vision tasks, including
general-purpose visual model pre-training, because the entities and scales we
have considered are common in human-centered videos. By design, COMPOSER is
capable of modeling multi-actor multi-object interactions in images or videos.
Moreover, COMPOSER offers numerous useful practices, including auxiliary pre-
diction to aid training stacks of Transformers, and techniques that can aid the
model to learn the high-level knowledge from the low-level coordinate-based key-
point signals (e.g. data augmentations with random perturbation and OKS-based
keypoint features to mitigate the issue of noisy estimated keypoints).

Limitation As shown in the failure cases of COMPOSER, videos with severe oc-
clusions remain challenging. Severe occlusion can be a limitation for all GAR
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methods as their modalities are derived from the RGB input. COMPOSER might
handle occlusion better than RGB-based methods. In partial occlusion scenarios
(i.e., only a ratio of keypoints are occluded for the person – examples are cases
shown in Fig. 6 of the main paper, Fig. 7 and Fig. 9 in the Appendix), because
COMPOSER learns human motion dynamics, better representation of occluded per-
sons can be inferred from the keypoints. In addition, COMPOSER is agnostic to the
keypoint backbone, and many SOTA keypoint extractors are robust to occlusion
(e.g, BlazePose [?,2]).

Societal Impact Human group activity recognition has widespread societal
implications in a variety of domains including security, surveillance, kinesiol-
ogy, sports analysis, and rehabilitation. Privacy and ethical concerns might be
raised when deployed in real-world settings if not done in a careful manner. In
response to these concerns, COMPOSER utilizes only keypoint input and does not
use any personally identifiable information for inferring group activity. Even for
the backbone which COMPOSER is agnostic to, there are existing works [39] that
perform privacy-preserving pose estimation. Hence, our method can prevent the
sensor camera from acquiring detailed visual data that may contain private or
biased information of users.
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of a test set instance in the “right winpoint” class.
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Fig. 11. Mislabeled test set clip example of VD. The annotated label is wrong
but the prediction from COMPOSER is correct (key actor is actor 0).
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Fig. 12. Mislabeled test set clip example of VD. The annotated label is wrong
but the prediction from COMPOSER is correct. Actor 8 is performing the key action setting
and interacting with the ball. Actor 7 is performing an action very similar to spiking
but actor 7 is missing interaction with the ball.
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Fig. 13. A failure case on VD. Actor 0 is the one performing the key action. At
scale 2 and 3, COMPOSER successfully identifies tokens associated with the key person as
the most important tokens. However, at scale 1, COMPOSER fails to focus on keypoints
of actor 0 and eventually makes a wrong group activity prediction.
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Fig. 14. A failure case on VD. Camera position of this clip is different from other
clips in VD, and COMPOSER fails to distinguish which team performs the activity.
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Fig. 15. A failure case on CAD. Because of the severe occlusion, the person queue
is interrupted and COMPOSER predicts waiting instead of queueing.
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Fig. 16. A failure case on CAD. The movement of actor 1’s leg might cause the
wrong prediction of COMPOSER.
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Fig. 17. A failure case on CAD. The movement of actor 0’s leg might cause the
wrong prediction of COMPOSER.
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Fig. 18. A failure case on CAD. In the clip, persons were waiting before starting
to cross the street. The dynamics are not easily perceptible due to the short temporal
window of the clip.
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